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Abstract

Network traffic increases by 30% percent each year and is even expected to increase by a
greater margin as more people and devices are getting connected to the internet. During
this COVID-19 period, optical networking vendors have reported experiencing an unpre-
dictable surge in data demands that are stressing the existing optical networks. Studies
have shown that we are almost approaching the capacity crunch of single-mode fibers,
and since the current optical networks are mainly made of single-mode fibers, we need
new technologies to meet these increasing demands. Space division multiplexing, elastic
optical networks, high order modulation formats are some of the technologies being pro-
posed with each technology having its pros and cons. Space division multiplexing (SDM)
has received a lot of attention as an alternative solution and it involves exploiting the
spatial diversity of optical fibers in the form of polarization, the number of modes, num-
ber of cores or fibers working as bundles. Although SDM fibers represents a promising
solution compared to the current single-mode fibers, such fibers introduce new challenges
due to the interactions among the propagating modes.

In ideal optical fibers, birefringence does not exist, and thus optical modes propagate
inside the fiber without coupling. In practical cases, birefringence manifests itself due
to imperfections, such as imperfect circular symmetry during the fiber manufacture, or
due to external stresses, such as mechanical pressure exerted after manufacturing. This
asymmetry results in random perturbation causing the two field polarizations to have
different group delays, hence polarization mode dispersion (PMD) arises. In a multi-mode
fiber, random birefringence leads to spatial mode dispersion (MD) among the different
spatial models, in addition to the PMD among the polarizations of each mode.

This thesis investigated the impact of PMD and SMD on optical fiber transmissions,
especially focusing on its interaction with the nonlinear interference (NLI) arising during
the signal propagation along the optical fiber. With this aim, we exploited the Gaussian
noise (GN) model extended to include PMD and SMD to estimate the cross-channel
nonlinear interaction. Such a closed-form expression allows to quickly estimate the impact
of SMD on non-linearities for several transmissions and links configurations. We also
performed numerical simulations by means of the Split Step Fourier method (SSFM) to
confirm the model prediction. The obtained results showed that modal dispersion can be
very beneficial in reducing the NLI in various scenarios. In particular, we tested different
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optical systems in terms of: dispersion, attenuation, channel spacing, symbol rate, and
number of modes.



Introduction

The invention of lasers [1] and the discovery that impurities in the glass medium caused
hundreds of losses in decibels [2] in 1960s spurred a greater development in optical fiber
communications. Later in the 1980s after intensive research and development in photonic
devices, optical fiber replaced coaxial cable systems as a means of transmitting informa-
tion because of its low cost and attenuation, lighter and immunity to electromagnetic
interference. The development of erbium doped fiber amplifier, wavelength division mul-
tiplexing, elastic and mixed rate optical networks, allowed higher achievable transmission
rates to grow exponentially; with a compound annual growth rate of tenfold every four
years.

These developments in optical fiber communications has seen more people being con-
nected to the internet and was seen as a luxurious opportunity by the vendors as the
demands keep growing every year [3]. Network demand continues to grow at more than
30% per year and is even expected to grow further with the introduction of technologies
like cloud computing and internet of things where more devices are being connected to the
internet. According to Orange Telecom, the predicted 30 % yearly increase in demands is
way below the real demands and that we should expect a more and more demands in the
coming years. In this COVID-19 period, we are witnessing unpredictable increase in data
demands that are stressing the existing optical fiber networks [4]. Furthermore, Cisco
predicts that an average 19% compound annual growth in internet users in 2022 and a
global internet protocol traffic reaching an all time high annual rate of 4.8 zettabytes by
the end of the year [5].

Most optical networks currently are made up of single mode fibers (SMF). Such
fibers currently provide an infrastructure for transmitting ultra high capacities. However,
studies have shown that there is a capacity limit [6] resulting from the non-linear response
of fiber optic systems and that such a limit is likely to reached soon yielding a capacity
crunch [7]. Claude Shannon in [8] showed that the capacity of a channel with additive
white Gaussian noise can be calculated as,

C = Blog2(1 + SNR) (1)

where C is the capacity, B is the bandwidth, SNR is the signal to noise ratio -referred to
as OSNR in optical communications,i.e., is the ratio of the signal power to noise power,
mainly caused by amplified spontaneous emission. From equation 1, the channel capacity
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Figure 1: Evolution of optical fiber transmission technologies [9].

explicitly depends on the bandwidth and the OSNR. One might argue that to increase
the capacity, one could increase the SNR by increasing the power of the signal. While
this is true in a channel with additive white Gaussian noise, the same is untrue for a fiber
optic channel which has a multiplicative noise and a non-linear response to an increase
in power and distance. The input-output relationship of an optical fiber channel involves
solving a partial differential equation that does not have a closed form solution. Hence,
a keen analysis is required to explore ways to combat non-linearity.

The approaching capacity crunch in single mode fibers has galvanized researchers
to find ways to navigate this capacity crunch challenge. Several technologies have been
proposed including, but not limited to, spatial division multiplexing (SDM), ultra-wide
band (UWB) fiber optic systems, elastic optical networks, high order modulation formats.
Each solution seems to have its own advantages and disadvantages, and a preference from
different researchers.

Multi-band optical fiber systems involve using all the wavelengths between 1280nm
to 1700nm. Researchers in [10] claim that this technology is advantageous as it shifts the
current channel bandwidth from between 5-11.5 terahertz (C- and C+L band) to 53.5
terahertz (O, E, S, C, L bands) and that the multi-band system will use the already
existing fiber infrastructure. The main drawback is the requirement of new amplification
devices for the multi-band system.

Space division multiplexing has received a lot of attention lately and it entails manip-
ulating the spacial diversity in optical fibers in form of fiber bundles, multicore (MMF)
or multimode fibers(MCF). Unlike in SMF where the core diameter is between 5 to 12
micrometers and only one mode propagates, in SDM several modes propagate thus open-
ing a real channel parallelization that is known to be the best solution to increase the
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Figure 2: Space division multiplexed system with a)Multi-core fiber, b) Fiber bundles, c)

Multi-mode fiber

capacity.
The drawback of this technology according to [10] is that it would mean a complete

fiber infrastructure replacement, the technology is not mature, and a complex digital
signal processing at the receiver.

The Shannon channel capacity in optical fibers as shown in equation 1 changes to

C = 2×B ×M × log2(1 +GSNR) (2)

according to [11] when the above proposed technologies are implemented. B is the optical
bandwidth, M is the number of spacial optical paths that can be manipulated and GSNR
is the generalized signal to noise ratio given by

GSNR =
Ps

PASE + PNLI
(3)

where PASE is the power of amplified spontaneous emission and PNLI is the power of
the non-linear impairments and Ps is the power of the signal transmitted in the fiber.
Just like in SMF fibers that experiences both linear and non-linear effects, the same
effects are experienced in SDM systems but with a different degree with some linear
effects having been proved to be beneficial in combating non-linearities during the signal
propagation [12]. Mode coupling and mode dispersion are the main linear effects that
studies have shown to be beneficial in combating non-linearities. Strong mode coupling is
also beneficial in reducing the delay spread factor between the modes and thus a reduced
complexity at the receiver. Studies had further shown that a huge mode dispersion tends
to reduce the non-linear Kerr effects and thus an improved system performance when it
is allowed on the link.

In this thesis, i will focus on the interplay between mode dispersion and non-linear
interference in fiber optic systems. I will show that a strong mode dispersion is in-fact
beneficial in combating cross-phase modulation and other non-linearities. Furthermore, I
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will shown that by increasing mode dispersion and varying other system parameters for
example dispersion, symbol rate, attenuation,span length, the quality of transmission in
fiber optic systems is improved. The analysis is done both by means of split step Fourier
simulations and by using an ultrafast analytical Gaussian noise model, which is able to
capture the average or ergodic behaviour of non-linear variance.

The thesis is structured as follows, the first chapter discusses the linear propagation
in optical fibers, discussing the propagation in the scalar case and extending to the
multimode case. Attenuation, coupling, and mode dispersion are discussed. At the end
of the chapter, the thesis discusses the two linear propagation model-power and matrix
model.

The second chapter outlines the non-linear propagation in both the scalar and mode
division multiplexed systems. In this chapter we derive the non-linear Schroedinger equa-
tion for MDM systems. The chapter further analyses the non-linear impairments in terms
of both intra and inter group interference and how mode dispersion reduces these im-
pairments.

Chapter three discusses the work done and the results obtained. It shows how the
quality of transmission is improved when mode dispersion is enhanced. In this chapter, I
compare the results obtained from the GN model extended for mode dispersion with the
results from the SSFM simulations. The final chapter concludes the thesis and describes
the possibility of future work.



Chapter 1

Linear Propagation in Optical Fiber

Systems

This chapter introduces linear propagation in optical fibers. The first part describes
linear propagation in single mode fibers while the second part focuses on the multimode
scenarios.

1.1 Linear propagation in scalar case

In absence of nonlinear effects and birefringence, the propagation of the electric field in a
single mode fiber can be described through the linear Schrödinger [14] equation as shown:

dE

dZ
= −α

2
A− β1

dE

dt
+ j

β2

2

d2E

dt2
+
β3

6

d3E

dt3
(1.1)

where α is the attenuation constant, β1 is the group delay, β2 is the group velocity dis-
persion and β3 is the third order dispersion.

We now discuss the impact of each effect separately.

1.1.1 Attenuation

Signal attenuation in an optical fiber is caused by material absorption and scattering
(linear and nonlinear scattering), micro and macro bending, mode coupling losses and
losses resulting from splitters and connectors. The change in power from the input to the
output is governed by Beer’s law given by:

dP

dz
= −αP. (1.2)
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Consider a fiber of length L. If Pin is the input power, the output power Pout is related
to the input power by:

Pout = Pin exp(−αL). (1.3)

The attenuation constant is usually measured in dB
km and is calculated as:

α

[
dB

km

]
=
−10

L
log10

(
Pout
Pin

)
≡ 4.343α. (1.4)

1.1.2 Group delay

A bandpass signal like an electric field, propagates inside the fiber with a group velocity,
which can be related to the frequency and the propagation constant β by:

Vg =
dω

dβ

∣∣∣∣∣
ω0

(1.5)

where ω0 is the carrier angular frequency. The group delay is given as the inverse of group
velocity. The group delay in (1.1) is given by:

β1 =
1

Vg
. (1.6)

1.1.3 Group velocity dispersion (GVD)

Fiber dispersion is the linear process at which a pulse sent in a dielectric material like an
optical fiber broadens. It is caused by the material, waveguide or intermodal dispersion.
Both material and waveguide dispersions are categorised as chromatic dispersion and
are experienced in both single and multimode fibers whereas only intermodal dispersion
is experienced in multimode fibers. This broadening of the pulse causes inter-symbol
interference at the receiver since the receiver is unable to distinguish between the pulses
as it overlaps with other pulses.

For instance, in a single mode fiber of length L, a signal at frequency ω in the absence
of GVD, will arrive at the end of the fiber with a time delay T given by:

T =
L

Vg
. (1.7)

The frequency dependence on the group velocity means that pulses of different frequencies
will arrive at the receiver at different times. If ∆ω is the spectral width of the pulse, the
pulse broadening experienced on a fiber of length L is given by:

∆T =
dT

dω
∆ω =

d

dω

(
L

Vg

)
∆ω = L

d2β

dω2
∆ω (1.8)
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where is d2β
dω2 is the GVD parameter, β2 in (1.1). By using

ω =
2πc

λ
(1.9)

and
∆ω = −2πc

λ2
∆λ, (1.10)

(1.8) can be written as:

∆T =
d

dλ

(
L

Vg

)
∆λ = DL∆λ (1.11)

where D is the dispersion parameter given by:

D =
d

dλ

(
1

Vg

)
= −2πc

λ2
β2. (1.12)

If we consider only group velocity dispersion, the linear propagation equation in (1.1)
changes to:

dE

dz
= j

β2

2

d2E

dt2
(1.13)

which can further be rewritten as:

dE

dz
=
j

2
sign(β2)

τ2
0

τ2
0

d2E

dt2
(1.14)

where τ is the normalized time and the the ratio of τ2
0 to |β2| is the dispersion length LD.

A pulse of frequency transform A(0, ω) will experience GVD such that after distance z,
the pulse takes the expression:

A(z, ω) = e−j
β2
2
ω2zA(0, ω). (1.15)

GVD is a unitary operation: although there is pulse distortion, energy is saved:∫ ∞
−∞
|A(z, t)|2dt =

∫ ∞
−∞
|A(z, ω)|2dω

2π
=

∫ ∞
−∞
|A(0, ω)|2|e−j

β2
2
ω2z|2dω

2π
. (1.16)

The square of the exponential including the GVD parameter on the third term of (1.16)
is equivalent to one and thus when reconverted to time domain we get the initial pulse
with no energy changes. GVD also doesn’t alter the symmetry of the pulse implying that
the pulse symmetry is the same prior and after GVD.

A(z, ω) = A(0, ω)e−j
β2
2
ω2z ≡ A(0,−ω)e−j

β2
2

(−ω)2z ≡ A(z,−ω). (1.17)

If a pulse is transmitted in a high dispersive optical fiber such that GVD value is very
large, the pulse at the output of the fiber is the Fourier transform of the pulse at the
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input. For example, if we transmit a rectangular pulse in a high dispersive fiber, we will
get a sinc shaped pulse amplitude at the output due to GVD.

The problem of pulse broadening can be counteracted by designing a fiber with zero
dispersion, i.e by using dispersion shifted fiber. Alternatively, GVD can be eliminated
by inserting dispersion compensating fiber (DCF) which usually has a smaller effective
area compared to the transmission fiber. Another solution is based on using electronic
dispersion compensation, coding or adding a chirp to the laser.

There exists two types of dispersion management in optical links; dispersion un-
compensated and dispersion managed links. The difference between the two is that in
dispersion uncompensated links there is no recovery of dispersion within the link, it is
recovered in a lumped way at the receiver or transmitter. In dispersion managed links-
the accumulated GVD is indeed regularly recovered during the signal propagation by
means of dispersion compensating fibers, that leaves a small residual dispersion value is
left on the link. Several studies have shown the supremacy of dispersion uncompensated
links in mitigating the accumulation of the nonlinear interference due to the Kerr effect
along the link.

At large bandwidth it is also important to include the variation of β2 along frequency,
which is accounted by the β3 parameter, usually called third order dispersion.

1.1.4 Polarization mode dispersion

Equation (1.1) is for scalar propagation. In the presence of polarization effects, the electric
field can be described by a vector

~E(z, t) =

[
Ex(z, t)
Ey(z, t)

]
(1.18)

such that

~E =

(
x̂Exe

jφx + ŷEye
jφy

)
ej(ω0t−βz) (1.19)

where x̂ and ŷ are the unit vectors in x and y directions, Ex(z, t) is the electric field in
the x-polarization and Ey(z, t) is field on the y-polarization; φx and φy are the phases of
the x and the y component respectively; ω0 is the angular carrier frequency and β is the
propagation constant.

In an ideal SMF fiber, the group velocity of the two orthogonal polarizations is the
same, but in practical cases there exists birefringence arising from the imperfections
during the fiber manufacture or arising from mechanical pressure exerted after manu-
facturing. These asymmetries result in non-degeneracy of the group delays of the two
polarization tributaries, that thus experience different group delays hence polarization
mode dispersion. Birefringence can be defined by

∆β =
βx − βy

2π
λ

(1.20)
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where βx is the propagation constant of the electric field on the x-direction and βy is the
propagation constant in the y-direction. We thus a differential speed given by

Vg =
1

d(∆β)

dω

. (1.21)

We can generalize (1.1) to include PMD as:

d ~A

dZ
= jβ(ω) ~A (1.22)

where
~A(z, ω) = T̃ (ω)Ã(0, ω) (1.23)

represents the input-output propagation equation. ~A(z, ω) is the Fourier transform of
~A(z, t) given by

~A(z, ω) =

∫ ∞
∞

~A(z, t)e−jωtdt (1.24)

where

~A(z, t) = E(z, t)

(
Aeff
2Z0

) 1
2

(1.25)

and

T̃ (ω) = exp

[
−α

2
− jβ1ω − j

β2

2
ω2

]
z. (1.26)

Considering the two degree of freedoms resulting from the two polarizations, (1.22)
and (1.23) changes to

d ~A

dZ
= jB(ω)Ã (1.27)

~A(z, ω) = T(ω)Ã(0, ω) (1.28)

with B a Hermitian matrix and T a unitary matrix. In the polarization maintaining
fiber, the propagation can be modelled as

d ~A

dZ
= jB(ω)Ã = −jL

{
βx 0
0 βx

}
L†Ã(ω) (1.29)

with L a random 2X2, unitary Haar matrix.
A real fiber can be described as a concatenation of polarization maintaining fibers

according to the wave plate model. According to [15], [16], we subdivide the fiber, into a
concatenation of statistically independent sections as depicted in fig. 1.1.

L

[
ejβ

(1)
x ∆z 0

0 ejβ
(1)
y ∆z

]
L†. (1.30)
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Figure 1.1: Subdivides the fiber of length L into a concatenation of statistically indepen-

dent polarization maintaining fibers

Each section of the divided fiber is described by the coupling matrix in (1.30) and the
overall fiber is described by the concatenation of all the sections, i.e:

L1

[
ejβ

(1)
x ∆z 0

0 ejβ
(1)
y ∆z

]
L1
†L2

[
ejβ

(2)
x ∆z 0

0 ejβ
(2)
y ∆z

]
L2
†L3

[
ejβ

(3)
x ∆z 0

0 ejβ
(3)
y ∆z

]
L3
† · · ·LN

[
ejβ

(N)
x ∆z 0

0 ejβ
(N)
y ∆z

]
LN
†

(1.31)
where ∆z is the correlation length which is the length where the birefringence changes.

1.2 Linear propagation in mode multiplexed systems

Consider a fiber that supports N modes during propagation with the total number of
scalar modes being 2N considering the degree of freedom provided by the two polarization.
The electric field propagating along the fiber can then be written as:

~E(r, t) = Re

[
2N∑
n=1

~Fn(x, y, ω0)

Nn(ω0)
En(z, t)e−iω0t

]
(1.32)

En(z, t) is the complex field of the n-th mode and it evolves during propagation. Nn(ω0) is
the coefficient used to normalize and ensure that the power (in watts) carried in each mode
is equivalent to |En(z, t)|2 while ~Fn(x, y, ω0) is the lateral profile of the nth mode and
is orthogonal to each other lateral profile. Both the lateral profile and the normalization
coefficient are independent of distance. Defining |En(z, t)〉 as a hyper-polarization vector
- a column vector with 2N complex envelopes, it’s Fourier transform is given by:

|E(z, ω)〉 =
2N∑
n=1

∫
En(z, t)e−iβωtdt. (1.33)
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In the absence of non-linearity, the linear propagation of the complex envelope is described
by:

d|Ẽ〉
dz

= iB|Ẽ〉 (1.34)

where B(z, ω) is a 2N × 2N Hermitian matrix describing the evolution of the hyper-
polarization vector during propagation. Vector B(z, ω) can be expanded by using the
Taylor series and rewritten as

B(z, ω) = B(0) + B(1)ω +
B(2)ω2

2
. (1.35)

In an ideal fiber structure where there is no mode coupling, matrix B(z, ω) is diago-
nal [16]. In real cases it is never diagonal due to imperfections during fiber manufacturing.
The components of the vector B(z, ω) includes B(0) that describes the propagation con-
stant of each mode βn, B(1) that describes the inverse group velocity of each mode and
B(2) that describes the group velocity dispersion of each mode. The effect of fiber imper-
fection highly affects the propagation constants B(0) and has little effect on the inverse
group B(1) and little to no-effect on the group velocity dispersion B(2). As a result of
such imperfections, the state of hyper-polarization rotates randomly during propagation.

We assume that the N modes supported by the fiber can be grouped into quasi-
degenerate groups meaning that modes with similar ∆β are grouped together. For exam-
ple, we assume that a fiber supports 2 groups of Na and Nb modes such that the number
of scalar modes in each group is 2Na and 2Nb respectively. See fig. 1.2 for an example.

The linear propagation equation in group a in the above case becomes:

d|Ea〉
dz

= jB(0)
a |E〉 −B(1)

a

d|Ea〉
dt
− j β

′′
a

2

d2|Ea〉
dt2

+ jKab|Eb〉 (1.36)

and the propagation equation in group b becomes:

d|Eb〉
dz

= jB(0)
b |E〉 −B(1)

b

d|Ea〉
dt
− j

β′′b
2

d2|Eb〉
dt2

+ jK†ab|Ea〉 (1.37)

where β′′a and β′′b are the mode-average chromatic dispersion coefficient of the two mode
groups and Kab(z) is a 2Na×2Nb matrix accounting for the random linear coupling
between the two groups.

1.3 Mode coupling

The fiber imperfections discussed in the previous section cause a perturbation in the fiber
resulting in mode coupling. As a consequence, the propagating fields to evolve randomly.
Several studies have shown that a reduction in digital signal processing complexity at the
receiver can be gained if the coupling is restricted to occur within the mode groups [17],
[25]. It has also been shown in [18] that mode coupling can be beneficial in reducing the
group delay spread in mode multiplexing systems and that strong mode coupling could
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Figure 1.2: Complex envelopes E1 and E2 belong to the same group a, while E3 and

E4 belong to group b. Kab(z) is a 2Na×2Nb matrix accounting for the random linear

coupling between the two groups.

also beneficial in reducing mode dependent loss inducing power variations and channel
capacity fluctuations between the modes [19].

Mode coupling can be categorised into either strong mode coupling or weak mode
coupling. Strong coupling occurs among modes having nearly equal propagation con-
stants while weak coupling occurs among modes having unequal propagation constant
especially with large propagation constant difference. Modes with almost equal propaga-
tion constant couple over a distance between ten to a hundreds of meters [20], whereas
the coupling between modes with a huge propagation constant difference occurs after
several kilometres of propagation [21].

Coupling between modes can be described by two models: a field coupling model or
a power coupling model. The field coupling model describes the complex field coupling
and thus can explain the changes experienced in the eigenmodes and eigenvalues during
propagation. The power coupling model describes the power sharing between the modes
but is not able to model the changes experienced by the eigenmodes and eigenvalues of
the modes.

1.3.1 Field coupling model

As shown in [12], we assume that light travels along the z-direction and we define (x, y)
as a transverse plane and n0(x, y) as the unperturbed refractive index. This refractive
index is independent of the z coordinate. Solving the wave equation that is dependent on
n2

0(x, y), we get M orthonormal ideal propagating fields. Let E(x, y) denote one of the
modal fields thus for M fields
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Eu(x, y) u = 1, 2, 3, · · · ,M (1.38)

having a propagation constant βu where u = 1, 2, 3, · · · ,M . The complete electric field
can be written as

E(x, y, z) =
M∑
u=1

Au(z)Eu(x, y). (1.39)

If the fiber index profile is perturbed along the spatial coordinates then the electric fields
describing different modes couple together yielding

Au
dz

= −jβuAu +
∑
v 6=u

Cuv(z)Av u = 1, · · · ,M (1.40)

where the first term on the right hand side of (1.40) describes the uncoupled propaga-
tion while the second term describes coupling between modes with Cuv(z) the coupling
coefficient. The propagating field can also be written as a reference system tracking the
propagation constants.

E(x, y) =
∑
u

Au(z)Eu(x, y)e−jβuz. (1.41)

To understand the implications of this model, assume at z=0 only one mode v is excited
and that all the other modes having u 6= v are weakly coupled during propagation.

Av(0) = 1 Au(0) = 0 |Av(z)| << |Au(z)| (1.42)

After distance L, the field of mode u is given by

Au(L) = e−jβuL
∫ L

0
Cuv(z)e

−j(βv−βu)zdz u 6= v. (1.43)

The integral on the right hand side of (1.43) defines the phase matching condition and
how coupling depends on the propagation constant.

1.3.2 Power coupling model

The power coupling model describes the distribution of power between modes [13]. The
power for any given mode is denoted by

Pu(z) = 〈|Au(z)|Au(z)〉 (1.44)

and their evolution is given by

dPu
dz

= αuPu +
∑
v 6=u

huv(Pu − Pv), u = 1, · · · ,M (1.45)
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where αuPu is the loss by power attenuation while the second term on the right hand
side of (1.45) is the coupling between modes. Just like in the field model, the coupling
coefficient in the power model is given by

huv =

〈∣∣∣∣∣
∫ L

0
Cuv(z)e

−j(βv−βu)z dz

∣∣∣∣∣
2〉
. (1.46)

To understand the model better, assume a case of two modes, the coupling equations
become:

dPa
dz

= αPahab(Pb − Pa) mode a (1.47)

dPb
dz

= αPbhab(Pa − Pb) mode b (1.48)

where

Pa =
1

2
e−az

(
1 + e(−2habz)

)
(1.49)

and

Pb =
1

2
e−az

(
1− e(−2habz)

)
. (1.50)

1.3.3 Frequency-dependent propagation model

An electric field propagating inside a fiber at frequency ω can be denoted as

E(x, y, z, ω) =
M∑
u=1

Au(z, ω)Eu(x, y, ω) (1.51)

where Eu(x, y, ω) u = 1, · · · ,M are the eigenmodes of the unperturbed fiber. The
eigenmodes can be represented [12] by a vector as shown below.

~A(z, ω) =

(
A1(z, ω), A2(z, ω), A3(z, ω), · · · , AM (z, ω)

)T
(1.52)

T indicating transpose. As seen previously in (1.28) describing the propagation in single
mode regime, the linear propagation in multimode system is given by

A(z, ω) = F(ω)A(0, ω) (1.53)

where ~A(0, ω) is the input field and ~A(z, ω) is the output field. F(ω) is a F×F matrix
that describes the evolution of the electric field from the input to the output. Such a
matrix can be described by the wave plate model as the concatenation of K sections each
of length L(k)
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The equation describing uncoupled propagation in the kth section is given by

Au(z, ω) = exp

[
−αu

2
L(k) − jβu(ω)L(k)

]
Au(0, ω) (1.54)

with the propagation constant βu expanded using Taylor series to describe mode and
chromatic dispersion. Mode dispersion is described by the uncoupled group delays

β1,u =
dβku
dω

(ω) u = 1, · · · ,M. (1.55)

The average uncoupled group delay is given by

β̄
(k)
1 L(k) =

L(k)

M

∑
u

β
(k)
1,u (1.56)

and then mode dispersion is quantified using the parameter τ where

τu = β
(k)
1,u − β̄

(k)
1 (1.57)

and Σuτu = 0. Vector τ describes the group delays in k-th section where

τ (k) =

(
τ

(k)
1 , τ

(k)
2 , τ

(k)
3 , · · · , τ (k)

M

)
. (1.58)

Chromatic dispersion in the k-th section which is a combination of both waveguide
and material dispersion is given by

βk2,u(ω) =
−λ2

2πc
Dk
u u = 1, · · · ,M (1.59)

where D(k)
u is the dispersion coefficient of mode u given by

D(k)
u =

d

(
1

Vg,u

)
dλ

(1.60)

and Vg,u is the group velocity of its carrier wavelength. The mean mode chromatic dis-
persion parameter is denoted by

β̄
(k)
2 =

1

M

∑
u

β
(k)
2,u (1.61)

and mode dependent chromatic dispersion is described by

∆β
(k)
2,u = β

(k)
2,u − β̄

(k)
2 (1.62)
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Figure 1.3: a) The division of the fiber into small sectionsof length L(k) b)Each section

is decscribed by a propagation matrix F.

where ∑
u

∆β
(k)
2,u = 0 (1.63)

as shown in [12].

It is also possible to include mode dependent loss in the k-th section by a vector gk

with the vector being given as

g(k) =

(
g1, g2, g3, · · · , gM

)
(1.64)

where

g(k)
u = −

(
α(k)
u − ᾱ(k)

)
L(k) (1.65)

and ∑
u

g(k)
u = 0 (1.66)

with the average attenuation constant being calculated as:

ᾱ =
1

M

∑
u

αu u = 1, · · · ,M (1.67)

As shown in [12], the equation describing uncoupled linear propagation in the k-th
section including mode dependent loss, mode dependent chromatic dispersion and mode
dispersion is:

Λ(k)(ω) =


e

1
2
g
(k)
1 −jωτ

(k)
1 −

j
2
ω2∆β2,1L(k)

. . . 0
...
0 . . . e

1
2
g
(k)
M −jωτ

(k)
M −

j
2
ω2∆β2,ML

(k)

 . (1.68)
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Its customary to factor out the dispersion and the mode gain in (1.68) by

exp

[
1

2
ᾱ(k)L(k) − jβ̄(k)

1 L(k) − j

2
ω2β̄2L

(k)

]
. (1.69)

The coupled linear propagation on the k-th section is described by

F(k)(ω) = V(k)Λ(k)(ω)U(k)† (1.70)

where V(k) and U(k) are frequency independent unitary matrices representing coupling
at the input and output respectively. † denotes Hermitian transpose. When K sections
of the fiber are concatenated together, the propagation equation modelled by the matrix
is given by:

F(t)(ω) = F(K)(ω)F(K−1)(ω)F(K−2)(ω) · · ·F(2)(ω)F(1)(ω). (1.71)

In strong coupling, the correlation length is shorter than the fiber length and hence
the matrix propagation model requires the use of several fiber sections K with statically
independent the unitary matrices V(k) and U(k) to ensure independence in each section.
As previously seen in the single mode case but on a different scale for the multimode
case, the eigenvalues describing the linear effects scale with the square root of the fiber
length.

In weak coupling, the correlation length is usually smaller than fiber length. In this
case the eigenvalues describing the linear effects scales proportionally with the length of
the fiber.

1.4 Mode dispersion

Unlike in single mode fibers where polarization mode dispersion has a little or no effect
and can be neglected, mode dispersion in multimode fibers cannot be neglected. It arises
when spatial modes propagate with different group delays. Mode dispersion is particularly
high in fibers with step index profiles, while it can be mitigated by using fibers with
parabolic graded index profiles.

To understand the effect of mode coupling on mode dispersion, we assume that mode
dependent loss is negligible. The above assumptions changes (1.71) to a M×M identity
matrix as shown in [12] and given by

F(t)∗(ω)F(t)(ω) = I (1.72)

where I is a MXM identity matrix.
Defining

G = jF(t)
ω F(t)∗(ω) (1.73)

as a group delay operator where

F(t)
ω =

dF(t)(ω)

dω
(1.74)
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is the differentiation with respect to ω. The input- output relationship of the k-th section
is described by

A(z, ω) = F(k)(ω)A(0, ω) (1.75)

A(0, ω) = F(k)†(ω)A(z, ω) (1.76)

Λ(t)(ω) =

 e−jωτ1 0
. . .

0 e−jωτ1

 . (1.77)

The matrix shown on (1.77) describes the propagation of principal modes and since it
is diagonal it only describes the differential delays and no distortions resulting from
crosstalk.



Chapter 2

Nonlinear Propagation and

Interference in Optical Fiber

Systems

This chapter explains the non-linear propagation in optical fiber systems starting with
its genesis in optical systems. The first part of the chapter describes the non-linear prop-
agation and interferences in the scalar case while the second part extends the nonlinear
propagation to the multimode scenario by discussing its propagations and effects.

2.1 Nonlinear propagation and Interference in Scalar Case

When the intensity of an electric field is increased, a dielectric material like an optical
fiber produces a nonlinear response and as a result the polarization experienced on the
material is not linear, but nonlinear [22]. It is described by:

P = ε0

(
X(1)E +X(2)EE +X(3)EEE + · · ·

)
(2.1)

where ε0 is the permittivity in the vacuum, X(1) is the linear susceptibility representing
the dominant contribution to polarization and it influences the refractive index and atten-
uation coefficient. X(2) is the second order susceptibility responsible for second harmonic
generation. Second nonlinear effects vanish in materials with symmetric moleculars like
the optical fibers. The third order susceptibility X(3) is responsible for third harmonic
generation, four wave mixing, and non-linear refraction. As a consequence of X(3), the
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resulting non-linear impairments show an intensity dependence on the refractive index.
The refractive index can then be rewritten as

ñ(ω, |E|2) = n(ω) + n2|E|2 (2.2)

where n(ω) is the linear part given by Sellmeier equation, |E|2 is the optical intensity
inside the fiber, n2 is the non-linear index coefficient related to third-order susceptibility
by

n2 =
3

8n
Re(Xxxxx). (2.3)

The nonlinear polarization vector in (2.1) can be rewritten [25] as:

~PR(~r, τ) = ε0X
(3)
el | ~E(~r, t)|2 ~E(~r, t) + ε0X

(3)
R

∫ ∞
−∞

dτ(t− τ)| ~E(~r, τ)|2 ~E(~r, t)

+ε0X
(3)
R,⊥

∫ ∞
−∞

dτg(t− τ) ~E(~r, t) ~E(~r, τ). ~E(~r, τ).

(2.4)

The first term to the left of (2.4) proportional to Xel defines the instantaneous electronic
response in glass while the second and the third term defines the response of the nuclei.
The third term results from nuclear response and since its magnitude is lower than the
magnitude of the second term, it can be neglected. The effect on both the electrons and
nuclei causes a contribution that propagates in the same direction as the existing field.
The two terms g(t) and h(t) are assumed to be normalized to 1. Equation (1.34) becomes

d|Ẽ〉
dz

= iB|Ẽ〉 −A|Ẽ〉+ |L(NL)〉 (2.5)

where |L(NL)〉 is a nonlinear term given by

L(NL) =
iω0

2Nn(ω0)

∫
dxdyF̄n(x, y, ω0)~PR(~r, τ). (2.6)

By using (1.1) and (2.3) and following the steps of section 2.3 of [23], we get

dE

dZ
= −α

2
A− β1

dE

dt
+ j

β2

2

d2E

dt2
+
β3

6

d3E

dt3
− j3ω2

0Xxxxx

8β0c2
|E|2E (2.7)

an equation known as Non-linear Schroedinger equation (NLSE). The normalization used
in (1.25) changes (2.7) and it becomes related to the instantaneous power by

dA

dZ
= −α

2
A− β1

dA

dt
+ j

β2

2

d2A

dt2
+
β3

6

d3A

dt3
− jγ|A|2A. (2.8)

The effect of intensity on the refractive index results in two effects: self-phase modu-
lation(SPM) and cross-phase modulation (XPM).
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Figure 2.1: Multi-span fiber system

2.1.1 Self-phase modulation

Self-phase modulation is a nonlinear effect realized when an electric field induces a non-
linear phase shift when the field propagates inside an optical fiber. SPM is dominant
when the nonlinear length LNL is much less than the fiber length L and the fiber length
is much less than the fiber dispersion length LD.

LNL << L << LD. (2.9)

Nonlinear length is calculated as LNL = 1
γP while the dispersion length is calculated as

LD = T0
|β2|2 with T0 being the symbol period. By using a pre-attenuated reference system

where
A(z, t) =

√
Pe−

α
2
zU(z, τ), (2.10)

its derivative
dA

dz
is given by:

dA

dz
= −jγ|A|2Ae−αz. (2.11)

Inverting (2.10), its derivative can be re-written as:

dU

dz
= j

sign(β2)

2LD

d2U

dτ2
+
sign(β3)

6LD

d3U

dτ3
− j e

−αz

LNL
|U |2U. (2.12)

Assuming no group velocity dispersion and third order dispersion, (2.12) reduces further
to:

dU

dz
=
−j
LNL

|U |2Ue−αz. (2.13)

Let
A(z) = |A|ejφ(z) (2.14)

be the phase component and using the equality

d|A|2

dz
=
dAA∗

dz
= A

dA∗

dz
+
dA

dz
A∗ (2.15)

and substituting the phase component in (2.14) into (2.11), we get the change of phase
given by:
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dφ

dz
= −γ|A|2e−αz. (2.16)

After distance z, the phase change is given by:

φ(z) = φ(0)− γ
∫
e−αod o |A(0)|2, (2.17)

thus a known electric field at A(0) with φ(0) will experience a phase shift and the known
electric field changes to

A(z) = |A(0)|ej[φ(0)−γ|A(0)|2Leff (z)] (2.18)

after distance z. Leff is the effective length given by

Leff =

∫
e−αodo = 1− e−αz

α
. (2.19)

SPM exists in the first few kilometres of the fiber and the nonlinear phase rotation at
any distance z, is given by

φNL = γ|A(0)|2Leff (z). (2.20)

For a multi-span system as shown in figure 2.1, SPM grows with the number of spans.
For example after span 1, the SPM is

A(L) = |A(0)|ejγ|A(0)|2Leff (z) (2.21)

After span 2,
A(2L) = |A(0)|ej2γ|A(0)|2Leff (z) (2.22)

After n spans,
A(nL) = |A(0)|ejnγ|A(0)|2Leff (z). (2.23)

2.1.2 Cross-phase modulation

To increase the capacity, wavelength division multiplexing is used where two channels or
more are propagated inside the fiber at different wavelengths. However because of Kerr
effects, they interact with each other causing nonlinear cross talk.

Consider two channels, a and b, with different fields. In the absence of group velocity
dispersion and four wave mixing, their propagation equations are:

dAa
dz

= −α
2
Aa − β1a

dAa
dt
− jγ|Aa|2Aa − j2γ|Ab|2Aa Channel a (2.24)

dAb
dz

= −α
2
Ab − β1b

dAb
dt
− jγ|Ab|2Ab − j2γ|Aa|2Ab Channel b. (2.25)
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After a change of variable in the retarded time frame of channel a, (2.24) and (2.25) can
be rewritten as:

dAa
dz

= −α
2
Aa − jγ|Aa|2Aa − j2γ|Ab|2Aa (2.26)

and
dAb
dz

= −α
2
Ab − (β1b − β1a)

dAb
dt
− jγ|Ab|2Ab − j2γ|Aa|2Ab. (2.27)

Again in a lossless reference system:

Aa,b(z, τ) = e−
α
2
zUa,b(z, τ) (2.28)

we get

d|Ua|2

dz
= U∗a

dUa
dz

+
dU∗a
dz

Ua = 0 (2.29)

hence, the power is not changing contrary to the phase. For channel b we have:

d|Ub|2

dz
= U∗b

dUb
dz

+
dU∗b
dz

Ub = dabU
∗
b

dUb
dz

+ dab
dU∗b
dz

Ub (2.30)

where dab = β1a− β1b. Equation (2.30) can be solved exactly showing a channel walk-off

|Ub(z, τ)|2 = |Ub(0, τ + dabz)|2. (2.31)

Applying the same procedure as done in section 2.1.1 for SPM, we get the change of
phase as:

dφa
dz

= −γe−αz|Ua(0, τ)|2 − 2γe−αz|Ub(z, τ)|2 (2.32)

where |Ub(z, τ)|2 = |Ub(0, τ + dabz)|2. By integrating both sides of (2.32), the result is

φa(z, τ) = φa(0, τ)− γ
∫ z

0
e−αξ|Ua(0, τ)|2dξ − 2γ

∫ z

0
e−αξ|Ub(0, τ + dabo)|2dξ. (2.33)

The first term of the right hand part of (2.33) is the phase change resulting from SPM,
while the second term is caused by XPM. In WDM systems, XPM is usually stronger
than in fully loaded WDM systems. Moreover while SPM is memoryless, XPM does have
a memory.

2.1.3 Four wave mixing

Four wave mixing (FWM) results when three electric fields propagate inside the fiber
simultaneously, such that a fourth field at frequency ω4 is generated resulting from the
third order susceptibility discussed in (2.1). The frequency generated is related to the
other three fields by:

ω4 = ω1 + ω2 ± ω3 (2.34)
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Figure 2.2: Four wave mixing: showing energy transfer between the channels [23].

FWM is dominant when the channel spacing and the dispersion are small, satisfying
the phase match condition. To understand the phase matching condition, we use regular
perturbation method [24] to solve the NLSE. Equation (2.8) can be rewritten as

dAn
dZ

= −α
2
An − β1,n

dA

dt
+ j

β2

2

d2An
dt2

+
β3

6

d3An
dt3

− jγΣk,l,mAkAlA∗me−j∆βklmz. (2.35)

The idea of regular perturbation is solving the NLSE by assuming that the γ is very
small. We let An(z, t) to be the function of γ as:

An(z, t) = f(γ,An, ∀n). (2.36)

Equation (2.36) can be expanded by using Taylor series to get

An(z, t) =

∞∑
p=0

Anp(z, t)γ
p (2.37)

where p denotes the perturbation order and n the channel number. By substituting the
expanded Taylor series into (2.35), we find

∞∑
p

dAnp
dz

γp =
∞∑
p=0

{
−α

2
Anp − β1n

dAnp
dt

+ j
β2n

2

d2Anp
dt2

}
γp

−j
∞∑

p,q,s=0

∑
klm

γp+q+s+1AkpAlqA
∗
mse

−j∆βklmz.

(2.38)

To get the unperturbed signal we set p=0, and get an input-output relation as was shown
in (1.28) in Chapter 1 related to:

An0(z, t) = A(0, t). (2.39)
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For p=1, the perturbation solution is given by:

dAn1

dz
=

{
−α

2
An1 − β1n

dAn1

dt
+ j

β2n

2

d2An1

dt2

}
−Ak0Al0A

∗
m0e

−j∆βklmz. (2.40)

By using the boundary condition An1(z, t) = 0, and assuming constant waves in the
pre-attenuated reference system, (2.40) changes to

dUn1

dz
= −je−αz

∑
klm

UkUlUme
−j∆βklmz. (2.41)

Such equation can be solved exactly yielding:∫ z

0

dUn1

dz
= Un1(z)− Un1(0) = −je−αz

∑
klm

Uk0Ul0Um0e
−j∆βklmz. (2.42)

hence
Un1(z) = −j

∑
klm

Uk0Ul0Um0

∫ z

0
e−αξe−j∆βklmξdξ (2.43)

In a single mode fiber, the integral can be closed yielding a FWM kernel given by:

ηklmn =
1− e−αze−j∆βklmz

α+ j∆βklm
(2.44)

where ∆βklmis the phase matching coefficient given by

∆βklm = β(ωk) + β(ωl)− β(ωm) = β(ωn). (2.45)

Knowing that Un(z) = Un0 + γUn1 and replacing the derivations in the main equation,
we find that the effect of FWM is given by:

An(z) = e
α
2
z

[
An(0)− jγ

∑
klm

Ak0(0)Al0(0)A∗m0(0)ηklmn

]
. (2.46)

As a general observation, we note that FWM can be reduced through bigger group
velocity dispersion values and unequal spacing between the channels, if possible.

2.2 Nonlinear propagation in Mode Multiplexed Systems

Consider a fiber experiencing random coupling and supporting N spatial modes with the
total number of scalar modes being 2N, the coupled nonlinear Schrödinger equation is
given by

dE

dz
= iB(0)E −B(1)dE

dt
− iB(2)d

2E

dt2
+ iγ

∑
jhkm

CjhkmE
∗
hEkEm (2.47)
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where Cjhkm is the nonlinear coupling coefficient and is given [26] by

Cjhkm =
n2
neffA11

NjNhNkNm
×

[
2

3

∫
dxdy(F ∗j Fm)(F ∗hFk) +

1

3

∫
dxdy(F ∗j F

∗
h )(FmFk)

]
(2.48)

where N2
i =

∫
dxdy|Fi|nf , while i = j, h, k,m and nf is the linear refractive index profile.

Let γ = ω0n2
cA11

be the nonlinear coefficient with c is the speed of light in vacuum. The
effective area of the fundamental mode A11 is given by:

A11 =

[∫
dxdy|F1|2

]2

∫
dxdy|F1|4

. (2.49)

For the fundamental mode, the nonlinear coupling coefficient given by c1111 = 1. N2
1 =

neff
∫
dxdy|F1|2 where neff is the effective index of the fundamental mode.

The propagation of electric field of group a and group b are described by:

d ~Ea
dZ

= −α
2
~Ea + iβa ~Ea − β′a

d ~Ea
dt
−Ba

d ~Ea
dt
− iβ

′′
a

2

d2 ~Ea
dt2

+ iγ(Kaa| ~Ea|2 +Kab| ~Eb|2) ~Ea group a

(2.50)

d ~Eb
dZ

= −α
2
~Eb + iβb ~Eb − β′b

d ~Eb
dt
−Bb

d ~Eb
dt
− i

β′′b
2

d2 ~Eb
dt2

+ iγ(Kba| ~Ea|2 +Kbb| ~Eb|2) ~Eb group b

(2.51)

where Ba and Bb are 2×2 matrices that describe the birefringence experienced within
the fiber. β′′a and β′′b are the chromatic dispersion coefficients and β′a and β′b are the inverse
group velocities. The term Kuv is a generalized SPM and XPM coefficient given by

Kuv =
∑
k,m

∑
h∀v

Cjhkm
δhkδjm + δhmδjk

2Nu + (2Nv + δvu)
(2.52)

with δab indicating the Kronecker delta.
Consider a wavelength division multiplexed signal in which we express the signal in

group a as:
Ea =

∑
k

Ea,ke
−ikΩt (2.53)

and group b:
Eb =

∑
k

Eb,ke
−ikΩt (2.54)

where Ω/2π is the channel spacing. Let channel Ea,0 be the channel of interest and the
remaining channels in both group a and group b be the interfering channels, i.e Ea,k
k 6= 0 and Eb,k are the interfering channels.
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Substituting (2.53) into (2.50) an intra-group interference arises from a term:

iγKaa(E
†
a,lEa,mEa,l−m + ηl,mE

†
a,lEa,l−mEa,m). (2.55)

The coefficient ηl,m is equivalent to 1 in all other cases except when l = 2m or when
l = m = 0 then it is 0. When (2.54) is substituted into (2.51), an inter-group interference
equation is defined, given by:

iγKabE
†
b,lEa,l−mEa,m (2.56)

As was done in [27], mode dispersion is assumed to be sufficiently large such that the
channels in the WDM system undergo independent mode coupling. Moreover we assume
that the distortion caused within the individual channels is negligible 1 .

2.2.1 Intra-group nonlinear interference

Intra-channel interaction

When l = m = 0 we have intra-channel effects. Equation (2.55) changes to:

iγKaaE
†
a,0Ea,0Ea,0,j = iγKaa|Ea,0,j |2Ea,0,j + iγKaa

2Na∑
k 6=j
|Ea,0,j |2Ea,0,j (2.57)

where j is the j-th component of Ea,0. The first term on the right hand side of (2.57)
is equivalent to the SPM in the scalar case as was defined in section 2.1.1. The other
remaining term on the right hand side contributes to cross-phase modulation and is
contributed by 2Na − 1 scalar modes and since they are statistically independent, their
contributions to the interference can be summed. As was first shown in [27], we generalize
all the SPM contribution by:

σ2
spm = σ2

spm,0 + (2Na − 1)(σ2
spm,1 − σ2

spm,0) (2.58)

where σ2
spm,0 is the SPM due to the scalar case and σ2

spm,1 is the generalized SPM governed
by the Makanov equation given by:

dE

dz
= −α

2
E − j β

′′

2

d2E

dt2
+ i

8

9
γ|E|2. (2.59)

Two-channel interaction

Consider a two channel interaction as shown in fig. 2.3c where l = m, with l,m 6= 0.
Equation (2.55) becomes

iγKaa

(
|Ea,l|2Ia + Ea,lE

†
a,l

)
Ea,0 (2.60)

1hence we assume that the bandwidth of modal dispersion is smaller than the channel bandwidth.
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Figure 2.3: a) Shows 4 modes in the channel of interest(COI) and SPM resulting from

the mode of interest. b) Shows cross phase modulation from different modes on the

mode of interest; generalized as SPM since we are interested on the COI. c) Cross phase

modulation from other channel different from COI.

where Ia is 2Na × 2Na identity matrix. In the presence of large mode dispersion, (2.60)
shown in [27] changes to:

iγKaa

(
1 +

1

2Na

)
|Ea,l|2Ea,0. (2.61)

If the jth component of vector Ea,l is considered, (2.61) can be rewritten as

iγKaa

(
1 +

1

2Na

)∑
k

|Ea,l,k|2Ea,0,j . (2.62)

The modes provide 2Na statistically independent nonlinear contributions and thus the
total XPM interference induced on the channel of interest is the sum of the individual
contributions and is given by:

σ2
xpm = 2Na

(
1 +

1

2Na

)2
σ2
xpm,scalar

4

(2Na + 1)2

8Na
(2.63)

where σ2
xpm,scalar is the variance produced by a single channel as in WDM as shown in

the scalar case. The factor of 4 shown in the equation accounts for the factor 2 present
in XPM in the scalar case.

When mode dispersion is small, the intra-group interference can be written as:

2iγKaa|Ea,l,j |2Ea,0,j + iγKaa

∑
k 6=j
|Ea,l,k|2Ea,0,j + iγKaa

∑
k 6=j

Ea,l,jEa,l,kEa,0,k (2.64)
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Figure 2.4: a) Two channel interaction b) Three channel interaction with two channels

being degenerate to the COI. c) Four channel interaction

where the first term is similar to the XPM variance given in the scalar case after replac-
ing γ → γKaa. The other 2N − 1 contributions represented by the summations in the
equation, yield an XPM variance

σ2
xpm = σ2

xpm,scalar +

(
2Na − 1

)(
σ2
xpm,0 − σ2

xpm,scalar

)
(2.65)

where σ2
xpm,0 is the XPM variance in each of the two polarizations of the single mode

fiber obeying Manakov equation.

Three-channel interaction

This interaction occurs when two interfering channels imposes effects on the channel
of interest. When mode dispersion is large enough the channels undergo uncorrelated
random coupling and thereby the nonlinear effects build up incoherently and can be
neglected, therefore, we only consider the case when mode dispersion is at a low value.

Three channel interaction exists in two forms; in one form, one channel is degenerate
to the channel of interest while in the second form, one channel is degenerate with
respect to one of the interfering channels. In the first case, the intra-group interference
experienced by channel 0 is given by:

iγKaaE
∗
a,0Ea,mEa,−m + iγKaaE

∗
a,0Ea,−mEa,m (2.66)

with m 6= 0. Its j-th component is expressed by:

iγKaa

(
2E∗a,0,jEa,m,jEa,−m,j +

∑
k 6=j

E∗a,0,kEa,m,kEa,−m,j + E∗a,0,kEa,−m,kEa,−m,j

)
(2.67)
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All terms in (2.67) are independent of each other and thus their contributions are summed
to get the total interference given by:

σ2
3−I =

(2Na + 1)

2
σ2

3−I,scalar (2.68)

where σ2
3−I,scalar is the nonlinear interference resulting from three channel interaction in

the single mode case.
In the second case, the intra-group interference is given by:

iγKaaE
∗
a,2mEa,mEa,m (2.69)

where m 6= 0. When l = 2m, its jth component is denoted by:

iγKaaE
∗
a,2m,jE

2
a,m,j + iγKaa

∑
k,k 6=j

E∗a,2m,kEa,m,kEa,m,k (2.70)

where the first term of the equation is equivalent to the nonlinear variance from the scalar
case and the remaining terms is same as the 2Na − 1. All in all, the nonlinear variance
can be written as

σ2
3−II = σ2

3−II,scalar +

(
2Na − 1

)(
σ2

3−II,0 − σ3−II,scalar

)
(2.71)

where σ3−II,scalar is the three channel nonlinear variance resulting from the scalar case
and σ3−II,0 three channel nonlinear variance from the single mode case.

Four-channel interaction

Occurs when three channels interact with the channel of interest and as shown in fig.
2.4c, the nonlinear interference is described by:

iγKaaE
∗
a,lEa,mEa,l−m + iγKaaE

∗
a,lEa,l−mEa,m (2.72)

where l 6= m, l 6= 2m and l,m 6= 0. Its jth component is given by:

i2γE∗a,l,jEa,m,jEa,l−m,j + iγKaa

∑
k,k 6=j

E∗a,l,kEa,m,kEa,l−m,j + E∗a,l,kEa,l−m,kEa,m,j . (2.73)

Since all the terms are uncorrelated and independent, the nonlinear variance arising from
the four channel interaction is given by

σ2
4ch =

2Na + 1

2
σ2

4ch,scalar. (2.74)

Mode dispersion is beneficial in combating nonlinear interference in fact in the pres-
ence of large mode dispersion, three and four channels interactions are averaged out
because of the uncorrelated wavelength multiplexed channel during propagation. For ex-
ample, in the experiment done by [27], the authors showed that the effect of XPM can
be reduced efficiently if a large value of mode dispersion is allowed.
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Figure 2.5: a) Inter-group interference between two groups similar to XPM. b) Inter-

group interference similar to four wave mixing-in both cases we assume that receiver

processes the signal independently and thus the zero frequency at group a and at group

b can be processed independently.

2.2.2 Inter-group nonlinear interference

Consider two groups of modes; group a with 2Na spatial modes and group b with 2Nb

spatial modes. Let group a, have the channel of interest and thus inter-group nonlinear
interference is the effects imposed on the COI by the channels in group b. The nonlinear
effects is defined by

iγKabE
∗
a,lEb,mKa,l−m (2.75)

and it exists in two forms when l = m and l 6= m.

a) Degenerate case l = m

When l = m, (2.75) changes to

iγKab|Eb,0|2Ea,0 (2.76)

and its vector expressed as:
iγKab

∑
k

|Eb,l,k|2Ea,0. (2.77)

The channels in group b impose cross-group phase modulation denoted by

σXGXPM = 2Nbζxpm,scalar (2.78)
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ζxpm,scalar is similar to σxpm,scalar shown in the previous section, with the difference that
the group velocities and chromatic dispersions must be accounted for as shown in [27].

b)Non degenerate case l 6= m

With this condition, (2.75) changes to

iγKabE
∗
b,lEb,lEa,l−m (2.79)

which is equivalent to four wave mixing in intra-group interference and hence in the
presence of large mode dispersion this effect is negligible. On the other hand when mode
dispersion is negligible then this effect must be accounted for. Its contribution is denoted
by:

σxGfwm = 2Nbζ4ch,scalar (2.80)

where ζ4ch,scalar is similar to the nonlinear interference contributed by the four chan-
nel interaction as was seen in the intra-group interference with the exception that the
channels are experiencing different chromatic dispersion and group velocities.



Chapter 3

Simulation Results and Discussion

In this chapter, we investigate the effects of mode dispersion in the nonlinear regime by
simulating different optical fiber scenarios. Firstly, we investigate the nonlinear optical
system response in the single mode fibers when the value of polarization mode dispersion
is varied. Secondly, we investigate the nonlinear optical system response in the SDM case
when the number of modes and the value of mode dispersion is varied. The investigation
is done both by the split step Fourier method (SSFM) simulations and the Gaussian
noise model that was extended in [28] to accommodate mode dispersion.

3.1 Gaussian noise model

The variance of the nonlinear interference can be computed through the Gaussian noise
model [29]. By using this model we assume that the transmitted signal is Gaussian
distributed and that the nonlinear impairments received are additive as per the additive
white Gaussian noise channel. The signal to noise ratio (SNR) can thus be defined as:

SNR =
Ps

PASE + PNLI
(3.1)

where PASE is the power of amplified spontaneous emission, PNLI is the power arising
from the non-linear impairments and Ps is the power of the signal transmitted in the
fiber. The SNR penalty due to the nonlinear interference is given by:

SNR =
Ps

PASE

1

1 + PNLI
PASE

=
SNRlin
SP

(3.2)

where SP is the penalty with respect to the linear propagation. The additive NLI is rea-
sonably a circular noise, with a small phase noise contribution that in most of the links
has a minor impact [30]. The power spectral density of the NLI can be evaluated accord-
ing to the GN model, whose main result when the transmitted symbols are Gaussian
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distributed is:

GNLI(f) =
16

27
γ2L2

eff

∫ ∞
−∞

∫ ∞
−∞

GWDM (f1)GWDM (f2)GWDM

(f1 + f2 + f3)ρ(f1, f2, f)χ(f1, f2, f)df2df1

(3.3)

where

1. γ is the nonlinear coefficient.

2. Leff is the effective length in kilometres.

3. GWDM (f) is the WDM signal power spectral density.

4. ρ(f1, f2, f) is the FWM efficiency.

5. χ(f1, f2, f) is the coherent interference at the receiver that takes into account mul-
tiple spans.

The formula can be interpreted as a description of the beating between a single WDM
signal with all other signals through a FWM process. The beating process as a result,
introduces interferences which can be classified as: self-channel interference, cross-channel
interference, and multi-channel interference.

The power spectral density of nonlinear interference is reasonably flat within the
signal bandwidth. Its value at the spectrum f = 0, has been approximated by Poggiolini
[29] in a single span as:

GNLI(0) =
8

27

γ2G2
WDML

2
eff

πβ2Leff,a
asinh

(
π2

2
β2Leff,aB

2
chN

2Bch
∆f

ch

)
(3.4)

where Bch is the bandwidth of the channel, Nch is the number of channels, ∆f is the
channel spacing, Leff = (1− exp(−αLs)/α) is the effective length, Ls is the fiber length
and Leff,a = 1/α.

For a multi-span system, the interference is calculated as:

GNLI =
16

27

γ2Leff
πβ2Ls

[1−Ns +NsHarNum(Ns − 1)] (3.5)

where Ns is the number of spans, while HarNum(k) is the k-th harmonic number.
In a generalized and more accurate formula, according to [29], the nonlinear interfer-

ences due to XPM only can be calculated by:

GNLI(0) =
γ2G3

WDML
2
eff (2

3)3

πβ2Leff,a

( Nch−1
2∑

k=−Nch−1
2

,k 6=0

[asinh(πβ2Leff,aBch × [k∆f +
Bch
2

]) +

asinh(πβ2Leff,aBch × [k∆f − Bch
2

])] + asinh(
π

2
β2Leff,aB

2
ch)

)
(3.6)
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The Gaussian noise model was initially introduced for single mode fibers [29], [32]. It was
later extended to include polarization dependent loss in [33]. In [34], [35] it was extended
to include the non-linearities in the multimode and multicore scenarios. However, all such
works neglected the interaction of mode dispersion with the Kerr effects. Unfortunately,
mode dispersion cannot be neglected in the SDM case because of its high values and
therefore it was included in the GN model by P. Serena, et, al. The authors in [28]
focused mainly on the interaction with cross-phase modulation which is the dominant
nonlinear effect in dense wideband communication systems.

The key idea of [28] was the following: consider a data symbol ak at discrete time k1

sent at channel k2 on spatial mode k3. The sent signal can be written as

|A〉 =
∑
k

ak|Gk(0, t)〉 (3.7)

where
|Gk(0, t)〉 = p(t− k1T )ejΩk2 t|k3〉. (3.8)

T is the symbol time, p the supporting pulse, Ωk2 is the carrier frequency of the channel
k2. The interaction of the channel noise and the signal can be written as:

yi = ai + ni ≡ ai − j
∑
k,m,n

a∗kamanXkmni. (3.9)

Xkmni is defined as:

Xkmni = γκ

∫ z

0
f(ξ)〈Gk(ξ, t)|Gm(ξ, t)〉 × 〈Gi(ξ, t)|Gn(ξ, t)〉dξ (3.10)

where γ is the nonlinear coefficient, κ is the Manakov correction term given by [25]

κ =
4

3

2N

2N + 1
, (3.11)

f(z) is the loss function. As shown in [28], the variance of the nonlinear interference
becomes:

var(n1) =
∑
k,m,n

(
XkmniX

∗
kmni +XkmniX

∗
knmi

)
. (3.12)

In the absence of mode dispersion, the function Xkmni is symmetric to Xknmi yielding
the factor 2 of classical XPM. The symmetry does not hold in the presence of mode
dispersion.

In [28] the authors included mode dispersion in the XPM variance expression, under
the assumption that intra-channel PMD can be neglected. As a consequence, only inter-
channel PMD is taken into account. The idea is sketched in fig. 3.1. The Gaussian noise
model can be extended to calculate the variance of XPM in a two channel scenario with
ultra-long span length, as follows:

lim
Ls→∞

σ2
xpm =

2N + 1

2N

(
(2N + 1)σ2

xpm,1 +
(2N − 1)(α+ ∆ω2µ2

N )

α
σ2

xpm,1

(
α+

∆ω2µ2

N

))
(3.13)
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where N is the number of modes, σ2
xpm,1 is the XPM variance in the scalar case, µ is

the mode delay and ∆ω is the channel spacing. In the special case of dual polarization,
mode delay µ is related to polarization mode dispersion value by

µ = PMD

√
π

8
. (3.14)

σ2
xpm,1 is calculated by:

σ2
xpm,1 =

γ2 PtestP
2
int

R3 L2
eff (2

3)3

πβ2Leff,a
×

Nch−1
2∑

k=−Nch−1
2

,k 6=0

(
asinh(πβ2Leff,aBch × [k∆f +

Bch
2

])+

asinh(πβ2Leff,aBch × [k∆f − Bch
2

])

)
×R

(3.15)

where R is the symbol rate, Ptest is the power of the channel under test and Pint is the
power of the interfering channel.

3.2 Simulation of polarization mode dispersion in single mode

fibers

To investigate the effects of polarization mode dispersion, we considered a fiber system
with parameters as shown in table (3.1). The optical link was made of lossless optical
amplifiers with a gain of 20 dB and a noise figure of 6 dB. The link was dispersion
uncompensated link with full and ideal GVD compensation before entering the receiver.
For the case of the analysis, we focused on an optical link with one span. Two channels,
each with a symbol rate of 49 Gbd, were transmitted in the system at different spacings
starting with 50 GHz. The digital signal used sinc pulses with Gaussian distributed
complex symbols.

We assumed that only inter-modal dispersion was in the play and that intra-modal
dispersion between the channels did not exist as was assumed by the authors in [28].

To simulate only the effects of XPM, we set the power of the channel under test
to be 30 dB smaller than the interfering channel, such that self-phase modulation was
absent of it. The interfering channel had a power of 0 dBm such that XPM was active on
the channel under test. Furthermore, we did not include amplified spontaneous emission
since our objective was the interaction between mode dispersion and the Kerr effect.
Different system parameters like dispersion, attenuation, span length, symbol rate, were
varied with the aim of testing the model accuracy evaluated in estimating the variance
of XPM.
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Figure 3.1: The difference between when only inter-channel modal dispersion is considered

and when both inter-channel and intra-channel dispersion is considered [31]. The blue

plot through the origin is when full PMD is tested.
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Table 3.1: Fiber parameters and their properties

Fiber parameters Properties

Fiber length 100 [km]

Dispersion 17 [ ps
nm·km ]

Attenuation 0.2[ dBkm ]

Nonlinear index n2 2.5e-20 [m
2

W ]

Nonlinear coefficient γ 1.26 [ 1
W.km ]

Fiber lambda 1550 [nm]

Fiber slope −[2×Fiber Dispersion
Fiber Lambda ]

Effective area 80 [µm2]

To evaluate the accuracy of the model, we performed SSFM simulations. According to
the SSFM algorithm, the non-linear Schrödinger equation can be written as:

dA

dz
= (L+N [A])A (3.16)

and thus the fiber is modelled as:

A(z + h, t) = ehLehNA(z, t) (3.17)

such that the operator L takes account of the linear effects and the N operator takes
account of the nonlinear effects. The optical fiber is divided into several segments of length
h where both the linear and nonlinear effects are considered separately until the entire
length of the fiber is analysed. The propagation of an optical signal is considered segment
by segment and is analysed in two steps. In each step, we applied the linear/nonlinear
effects individually as described by [36]. To improve the accuracy of the SSFM model the
segment of length h can be re-halved such that the new segment has a length of h/2. The
idea can be iterated until observing the saturation of the results. An improved version is
the symmetrised SSFM where the step is split as:

A(z + h, t) = e
hL
2 ehNe

hL
2 A(z, t). (3.18)

Due to the presence of PMD, the SSFM simulations rely on the wave-plate model as
discussed in Chapter 1. We used 4000 wave plates to test the interaction between PMD
and the Kerr effects.
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Figure 3.2: Transmitted spectra, showing two channels spaced ∆ω. The channel under

test had 30 dB smaller than the interfering one to suppress SPM.

3.2.1 Numerical results

In order to assess the impact of PMD on the XPM variance, we focused on the relative
XPM variance, defined as:

∆σ2
xpm =

σ2
xpm

σ2
xpm,no PMD

(3.19)

Exploiting the extended Gaussian noise model, we observed a reduction in the relative
XPM variance with increasing PMD values and channel spacing as shown in fig. 3.3.
For instance, when the channels were spaced at 50 GHz and the PMD value set to 2
ps/sqrt(km), we observed a relative XPM variance of -0.1 dB while if we increased the
PMD value to 10 ps/sqrt(km) with the same spacing, we observed an XPM variance of
-1.04 dB. When we increased the channel spacing from 50 GHz to 1000 GHz, we observed
a relative variance of -1 dB at a PMD of 2 ps/sqrt(km). A further reduction by 0.25 dB
was observed when we increased the PMD value to 10 ps/sqrt(km).

The XPM variance continues decreasing with an increasing mode dispersion until a
threshold modal dispersion is met after which the XPM variance saturates to its asymp-
totic value of -1.25 dB [27]. The explanation is that the mode dispersion decorrelates
the two channels along the propagation. The process saturates after experiencing full
decorrelation.

We validated the XPM formula in (3.13) with SSFM simulations in the presence of
only inter-channel PMD. Figure 3.4 shows a good match between the model (markers)
and the simulations (solid lines) as high channel spacing. However, a mismatch is observed
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for some PMD values when the channel spacing is small. This gap can be attributed to
the approximations involved in the derivation of the closed-form expression of the XPM
variance. The accuracy can be increased by implementing the Gaussian noise model with
numerical integration at the expense of a higher complexity [28]. We did not investigate
such an aspect in this work since we focused on ultra-fast expressions that can be used
in the real operation of a network. Moreover, the numerical expression require complex
algorithm to test them which was out of the scope of this thesis.

Figure 3.5 shows the XPM variance with the increasing polarization mode dispersion
when group velocity dispersion is varied. We observe a monotonic behaviour, with the
lowest relative variance values at the smallest dispersion. Therefore, we can conclude that
the effect of PMD on the XPM variance is less evident at higher dispersion while it is
more beneficial at lower dispersion values.

Figure 3.6 shows the results for a wider range of PMD values, hence showing the
saturation of the XPM curves. In addition, the figure includes SSFM sanity checks for
all the dispersion values,under the assumption of inter-channel PMD. It can be seen that
the agreement between the model and the SSFM results is excellent at low dispersion.

When we varied the attenuation from 0.01 dB to 0.2 dB, we recorded a negligible
change on the XPM variance as shown in fig. 3.7. We then investigated the effect of
symbol rate and we observed that increasing the symbol rate reduces the benefit of PMD
on the XPM variance. For instance, at a channel spacing of 100 GHz, 10 Gbd had the
highest impact of PMD in reducing the XPM variance compared to the 100 Gbd, both
at 2 and 10 ps/sqrt(km) as shown in fig.3.8. The reason is again that at higher symbol
rate the decorrelation induced by the GVD walk-off is stronger, thus mitigating the role
of PMD.

We then performed SSFM simulation with inter and intra channel PMD, with the
aim of investigating the validity of the model derived under the inter-channel PMD
assumption. The obtained results is as shown in fig. 3.9 for the same setup as fig. 3.7.
We used Gaussian distributed symbols at 49 gigabits per second with the channel spacing
50 GHz. The SSFM simulation conditions set in [37] were respected and the simulations
repeated for 1000 different random realization of the wave-plates.

The matching between the model and the SSFM in Fig 3.9 is not good because we
included intra-channel PMD in the SSFM while the model only accounts for the inter-
channel PMD.

We also tested the model by increasing the number of channels from 2 to 25 as
reported. The spacing between the channels were varied and the model tested at different
values of the symbol rate. For the first case, we set the channel spacing at 100 GHz and
varied the number of channels. We observed that the benefits of PMD on XPM reduces
when the number of channels is increased as shown in fig. 3.10. For example, when 25
channels were tested, a normalized XPM variance of -0.8 dB was recorded at a PMD
value of 10 ps/sqrt(km), while a variance of -1.18 dB was recorded when 3 channels
were tested at the same PMD value. The explanation is that as the number of channels
increases, the variance of XPM imposed on the channel of interest increases too as we
have to sum all the individual contributions of each channel. Furthermore, we observed
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Figure 3.3: The relative variance of XPM with respect to no PMD, reduces with an

increase in mode dispersion. The variance is observed to further decrease with an increase

in the channel spacing.
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44 Chapter 3. Simulation Results and Discussion

that even at higher channels count, the larger channel spacing reduced the relative XPM
variance as shown in fig. 3.11 for WDM comb of 11 channels.

If we normalize the XPM variance to its value at the channel spacing of 100 GHz, we
observed that PMD was beneficial in reducing the relative XPM variance. For instance,
the normalized XPM variance reduces more rapidly when the PMD value is increased
compared to when there is absence of PMD as shown in fig. 3.12 for 13 channels, and fig.
3.13 for 2, 5 and 9 channels.

3.3 Simulation of mode dispersion in multimode mode fibers

When N in 3.13 is greater than 1, the modal dispersion is referred to as spatial modal
dispersion. The key parameter for the strength of modal dispersion is the spatial modal
dispersion (SMD), which is related to the µ parameter [28] by:

µ =
SMD√

4N2−1
2N2 ×

√
N
2

(3.20)

We simulate the two channels each transmitting 49 Gbd at a spacing of 100 GHz. The
modulation format was Gaussian distributed symbols with 65536 symbols. We used the
same parameters as in the previous section, by substituting the fiber with a SDM fiber
supporting strongly coupled modes. The Manakov coefficient changes from the factor of
dual polarization shown in [29] to

κ =
4

3

2N

2N + 1
(3.21)

where the coefficient is dependent on the number of modes. We varied the nonlinear
coefficient γ such that the the new nonlinear coefficient γnew, was dependent on the
number of modes, i.e.

γnew =
γsc
N
. (3.22)

We also changed the number of modes starting at N=2 up to N=6 and set the other fiber
parameters as shown in table (3.1).

3.3.1 Numerical results

When the number of modes is increased, we observe a decrease in the XPM variance and
a further decrease with increasing spatial modal dispersion values as shown in fig. 3.14.
For example, when N=2 at 0 SMD value, we observe a power normalized XPM variance
of -50.2dB, while when the modal dispersion is increased to 12 ps/sqrt(km), we observe
a variance of approximate of -52 dB at the same value of N . If N is increased to 6, an
XPM variance of -54.5 dB is recorded when the SMD value is 0. A further reduction by
almost 3 dB is observed when the modal dispersion value increased to 12 ps/sqrt(km).
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Such result confirms that the variance of XPM reduces with an increasing number of
modes because of the new non-linearity coefficient which is dependent on the number of
modes given by:

κγsc
2N + 1

4N
(3.23)

where γsc is the nonlinear coefficient in the scalar case. The quality of transmission
determined by the SNR of each mode can be calculated as

SNR =
P

PASE + PNL
(3.24)

where PNL is given as

PNL = 2N

(
κγsc

2N + 1

4N

)
PNL,scalar (3.25)

as shown in [25]. P is the power allocated in each mode and PNL,scalar is equivalent to
χP 3 derived in [38]. An optimal SNR exists and is given by

SNRopt =

(
4N

2N + 1

) 2
3

× 2
2
3

3

(
√
χγPASE

) 2
3

×

[
√

2Nκ(N)

]
, (3.26)

when we maximise P in (3.24). We can deduce from (3.26) that SNRopt is proportional
to N

1
3 because of the dependence of κ on N when N »1. This shows that we can send

several strongly coupled modes along the fiber and take the advantage of mode dispersion
reducing the non-linearities impacting on the value of SNR. Figure 3.15 shows a close
similarity between the GN model and SSFM simulations for any value of N modes with
only inter-channel SMD. As was discussed previously, the discrepancy between the plots
results from the approximation errors made in [29].

Figure 3.16 and 3.17 depict the XPM variance in SDM for two different number
of modes N . We observe a different strength of the SMD-modified XPM variance by
varying N . For instance, at N=6 the XPM variance decreases by 2.7 dB at a symbol rate
of 10 Gbd with respect to the no SMD case, while at N=2 the decrease is only 1.6 dB.
By increasing the channel spacing to 1000 GHz , we observed almost 1.2 dB difference
between N=2 and N=6 at 30 ps/sqrt(km). This confirms our observation that the far
away channels have a smaller impact on the XPM variance than in SMF. This observation
may be useful in reducing the effort of a possible nonlinear mitigation algorithm when
applied to a superchannel made of several channels.
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Conclusion

The introduction of new technologies like the internet of things, cloud computing, and
more people and devices getting connected to the internet is leading to higher demands
for data. The problem is that the capacity of the existing optical network - mostly
composed of single-mode fibers-is limited by non-linearities. Researchers are working
on new technologies to find a possibility of meeting these data demands and one such
technology is space-division multiplexing. Just like single-mode fibers, the capacity of
multimode or multi-core fibers is influenced by the nonlinear impairments and therefore
the need to find solutions to combat or eradicate these effects.

In this thesis, we discussed the linear impairments in Chapter 1, starting with the
impairments experienced in single mode fibers and extended them to multimode fibers.
We observed that when spatial multiplexing is considered, it is impossible to omit modal
dispersion which can exist in the form of polarization mode dispersion in single mode
fiber or as spatial mode dispersion in the multimode case. We discussed the coupling
models and the advantages arising from mode coupling.

In chapter 2, we discussed the nonlinear impairments in single mode fibers which
occur in the form of self-phase modulation, four wave mixing, cross phase modulation.
We extended the impairments to the multimode domain discussing both inter and intra-
group interference and we observed that in the presence of mode dispersion, the effects
of nonlinear interference can be reduced.

in Chapter 3 we focused on a simplified model to describe the interaction of the Kerr
effect with the mode dispersion in a fast, yet approximated, way.

We simulated the Gaussian noise model extended to accommodate modal dispersion
in Chapter 3. Thanks to the short computational time of the extended model, we tested
different optical system at variable parameters including dispersion, channel spacing,
attenuation. We observed that modal dispersion is beneficial in combating non-linearities,
especially cross-phase modulation which is the dominant impairment at higher data rates
when implemented with other system parameters. We double-checked our results using
the SSFM simulations. Furthermore, we also observed that transmitting several modes on
a multimode fiber reduces the impact of the nonlinear impairments on the signal-to-noise
ratio and therefore we can take the advantage of modal dispersion to meet the demands
at a better quality of transmission.

Future work is open to exploring the effects of intra-channel modal dispersion on
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the non-linearities and modelling the effects of self-phase modulation in the presence of
dispersion.
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